Рассмотрим файлы с плотным индексом. В этих файлах основная область содержит последовательность записей одинаковой длины, расположенных в произвольном порядке, а структура индексной записи в них имеет следующий вид:
Значение ключа |
Номер записи |
||
Здесь значение ключа — это значение первичного ключа, а номер записи — это порядковый номер записи в основной области, которая имеет данное значение первичного ключа.
Так как индексные файлы строятся для первичных ключей, однозначно определяющих запись, то в них не может быть двух записей, имеющих одинаковые значения первичного ключа. В индексных файлах с плотным индексом для каждой записи и основной области существует одна запись из индексной области. Все записи в индексной области упорядочены по значению ключа, поэтому можно применить более эффективные способы поиска в упорядоченном пространстве.
Длина доступа к произвольной записи оценивается не в абсолютных значениях, а в количестве обращений к устройству внешней памяти, которым обычно является диск. Именно обращение к диску является наиболее длительной операцией по сравнению со всеми обработками в оперативной памяти. Наиболее эффективным алгоритмом поиска на упорядоченном массиве является логарифмический, или бинарный, поиск. Очень хорошо изложил этот алгоритм барон Мюнхгаузен, когда он объяснял, как поймать льва в пустыне. При этом все пространство поиска разбивается пополам, и так как оно строго упорядочено, то определяется сначала, не является ли элемент искомым, а если пет, то в какой половине его надо искать. Следующим шагом мы определенную половину также делим пополам и производим аналогичные сравнения, и т. д., пока не обнаружим искомый элемент. Максимальное количество шагов поиска определяется двоичным логарифмом от общего числа элементов в искомом пространстве поиска:
Тn = log2N,
где N — число элементов.
Однако в нашем случае является существенным только число обращений к диску при поиске записи по заданному значению первичного ключа.
Поиск происходит в индексной области, где применяется двоичный алгоритм поиска индексной записи, а потом путем прямой адресации мы обращаемся к основной области уже по конкретному номеру записи. Для того чтобы оценить максимальное время доступа, нам надо определить количество обращений к диску для поиска произвольной записи.
На диске записи файлов хранятся в блоках. Размер блока определяется физическими особенностями дискового контроллера и операционной системой. В одном блоке могут размещаться несколько записей. Поэтому нам надо определить количество индексных блоков, которое потребуется для размещения всех требуемых индексных записей, а потому максимальное число обращений к диску будет равно двоичному логарифму от заданного числа блоков плюс единица. Зачем нужна единица? После поиска номера записи в индексной области мы должны еще обратиться к основной области файла. Поэтому формула для вычисления максимального времени доступа в количестве обращений к диску выглядит следующим образом:
Тn = log2Nбл.инд. + 1.
Давайте рассмотрим конкретный пример и сравним время доступа при последовательном просмотре и при организации плотного индекса. Допустим, что мы имеем следующие исходные данные:
Длина записи файла (LZ) — 128 байт. Длина первичного ключа (LK) — 12 байт. Количество записей в файле (KZ) — 100000. Размер блока (LB) — 1024 байт.
Рассчитаем размер индексной записи. Для представления целого числа в пределах 100000 нам потребуется 3 байта, можем считать, что у нас допустима только четная адресация, поэтому нам надо отвести 4 байта для хранения номера записи, тогда длина индексной записи будет равна сумме размера ключа и ссылки на номер записи, то есть:
LI = LK + 4 = 14 + 4 = 16 байт.
Определим количество индексных блоков, которое требуется для обеспечения ссылок на заданное количество записей. Для этого сначала определим, сколько индексных записей может храниться в одном блоке:
KIZB = LB/LI = 1024/16 = 64 индексных записи в одном блоке. Теперь определим необходимое количество индексных блоков: KIB = KZ/KZIB = 100000/64 = 1563 блока.
Мы округлили в большую сторону, потому что пространство выделяется целыми блоками, и последний блок у нас будет заполнен не полностью.
А теперь мы уже можем вычислить максимальное количество обращений к диску при поиске произвольной записи:
Тпоиска = log2KIB + 1 = log21563 + 1 = 11 + 1 = 12 обращений к диску.
Логарифм мы тоже округляем, так как считаем количество обращений, а оно должно быть целым числом.
Следовательно, для поиска произвольной записи по первичному ключу при организации плотного индекса потребуется не более 12 обращений к диску. А теперь оценим, какой выигрыш мы получаем, ведь организация индекса связана с дополнительными накладными расходами на его поддержку, поэтому такая организация может быть оправдана только в том случае, когда она действительно дает значительный выигрыш. Если бы мы не создавали индексное пространство, то при произвольном хранении записей в основной области нам бы в худшем случае было необходимо просмотреть все блоки, в которых хранится файл, временем просмотра записей внутри блока мы пренебрегаем, так как этот процесс происходит в оперативной памяти.
Количество блоков, которое необходимо для хранения всех 100 000 записей, мы определим по следующей формуле:
КВО = KZ/(LB/LZ) - 100000/(1024/128) - 12500 блоков.
И это означает, что максимальное время доступа равно 12500 обращений к диску. Да, действительно, выигрыш существенный.
Рассмотрим, как осуществляются операции добавления и удаления новых записей.
При операции добавления осуществляется запись в конец основной области. В индексной области необходимо произвести занесение информации в конкретное место, чтобы не нарушать упорядоченности. Поэтому вся индексная область файла разбивается на блоки и при начальном заполнении в каждом блоке остается свободная область (процент расширения) (рис. 9.7):