Теория баз данных



         

Даталогическое проектирование - часть 10


Когда это может быть? Рассмотрим конкретную ситуацию, понятную всем студентам. Пусть дано отношение, которое моделирует предстоящую сдачу экзаменов на сессии. Допустим, оно имеет вид:

(Номер зач.кн.. Группа. Дисциплина)

Перечень дисциплин, которые должен сдавать студент, однозначно определяется не его фамилией, а номером группы (то есть специальностью, на которой он учится).

В данном отношении существуют следующие две многозначные зависимости: Группа -» Дисциплина Группа -» Номер зач.кн.

Это означает, что каждой группе однозначно соответствует перечень дисциплин по учебному плану и номер группы определяет список студентов, которые в этой группе учатся.

Если мы будем работать с исходным отношением, то мы не сможем хранить информацию о новой группе и ее учебном плане — перечне дисциплин, которые должна пройти группа до тех пор, пока в нее не будут зачислены студенты. При изменении перечня дисциплин по учебному плану, например при добавлении новой дисциплины, внести эти изменения в отношение для всех студентов, занимающихся в данной группе, весьма затруднительно. С другой стороны, если мы добавляем студента в уже существующую группу, то мы должны добавить множество кортежей, соответствующих перечню дисциплин для данной группы. Эти аномалии модификации отношения как раз и связаны с наличием двух многозначных зависимостей.

В теории реляционных баз данных доказывается, что в общем случае в отношении R (А, В, С) существует многозначная зависимость R.A -» R.B в том и только в том случае, когда существует многозначная зависимость R.A -» R.C.

Дальнейшая нормализация отношений, подобных нашему, основывается на теореме Фейджина.

ТЕОРЕМА ФЕЙДЖИНА

Отношение R (А, В, С) можно спроецировать без потерь в отношения R1 (А, В) и R2 (А, С) в том и только в том случае, когда существует MVD А -» В С ( что равнозначно наличию двух зависимостей А -» В и А -» С).

Под проецированием без потерь понимается такой способ декомпозиции отношения путем применения операции проекции,, при котором исходное отношение полностью и без избыточности восстанавливается путем естественного соединения полученных отношений.


Содержание  Назад  Вперед