Базы данных - модели, разработка, реализация



         

Основные определения


Появление теоретико-множественных моделей в системах баз данных было пред определено настоятельной потребностью пользователей в переходе от работы с элементами данных, как это делается в графовых моделях, к работе с некоторыми макрообъектами. Основной моделью в этом классе является реляционная модель данных. Простота и наглядность модели для пользователей-непрограммистов, с одной стороны, и серьезное теоретическое обоснование, с другой стороны, определили большую популярность этой модели. Кроме того, развитие формального аппарата представления и манипулирования данными в рамках реляционной модели сделали ее наиболее перспективной для использования в системах представления знаний, что обеспечивает качественно иной подход к обработке данных в больших информационных системах.

Теоретической основой этой модели стала теория отношений, основу которой заложили два логика - американец Чарльз Содерс Пирс (1839-1914) и немец Эрнст Шредер (1841-1902). В руководствах по теории отношений было показано, что множество отношений замкнуто относительно некоторых специальных операций, то есть образует вместе с этими операциями абстрактную алгебру. Это важнейшее свойство отношений было использовано в реляционной модели для разработки языка манипулирования данными, связанного с исходной алгеброй. Американский математик Э. Ф. Кодд в 1970 году впервые сформулировал основные понятия и ограничения реляционной модели, ограничив набор операций в ней семью основными и одной дополнительной операцией. Предложения Кодда были настолько эффективны для систем баз данных, что за эту модель он был удостоен престижной премии Тьюринга в области теоретических основ вычислительной техники.

Основной структурой данных в модели является отношение, именно поэтому модель получила название реляционной (от английского relation - отношение). N - арным отношением R называют подмножество декартова произведения D1?D2? ... ?Dn множеств D1, D2, ..., Dn (n ? 1), необязательно различных. Исходные множества D1, D2, ..., Dn называют в модели доменами.




Содержание  Назад  Вперед